###############################################################
#
# Class MarkovModel
#
package RSAT::MarkovModel;

## TO DO : 
## - fix bugs with the method average_strands()
## - for the model update, take into account the strand-insensitive models

use RSAT::GenericObject;
use RSAT::SeqUtil;
use RSAT::error;
use Data::Dumper;

@ISA = qw( RSAT::GenericObject );

### class attributes
@dna_alphabet =  qw (a c g t);
@pept_alphabet = qw (a c d e f g h i k l m n p q r s t v w y );

%supported_input_formats = ("oligo-analysis"=>1, 
			    "oligos"=>1, ## Abbreviation for oligo-analysis
			    "dyads"=>1, ## Abbreviation for dyad-analysis
			    "motifsampler"=>1, ## Same as inclusive
			    "inclusive"=>1, ## Same as motifsampler
			    "ms"=>1, ## Abbreviation for MotifSampler
			    "meme"=>1,
			   );
%supported_output_formats = ("tab"=>1, ## transition_freq
			     "transitions"=>1, ## transition table
			     "tables"=>1, ## frequency + transition tables
			     "patser"=>1,
			     "oligo-analysis"=>1,
			     "oligos"=>1, ## Abbreviation for oligo-analysis
			     "meme"=>1,
			     "motifsampler"=>1, ## Same as inclusive
			     "inclusive"=>1, ## Same as motifsampler
			     "ms"=>1, ## Abbreviation for MotifSampler
			    );
@supported_input_formats = sort keys %supported_input_formats;
@supported_output_formats = sort keys %supported_output_formats;
$supported_input_formats = join(",", @supported_input_formats);
$supported_output_formats = join(",", @supported_output_formats);

%supported_bg = ('upstream'=>1,
		 'upstream-rm'=>1,
		 'upstream-noorf'=>1,
		 'upstream-noorf-rm'=>1,
		 'intergenic'=>1,
		 'genomic'=>1,
		 );

my @sequence_types = ('upstream_mRNA','upstream_CDS','firstintron','intron','utr');
my @maskcoding = ('-maskcoding');
#  my @noorf = ('-noorf','-nogene','');
my @maskrepeats = ('-rm','');

foreach my $sequence_type(@sequence_types) {
    foreach my $maskcod(@maskcoding) {
	foreach my $maskrep(@maskrepeats) {
	    my $bg_type = $sequence_type.$maskcod.$maskrep;
	    $supported_bg{$bg_type} = 1; 
	}
    }
}

@supported_bg = sort keys %supported_bg;
$supported_bg = join(",", @supported_bg);

=pod

=head1 NAME

    RSAT::MarkovModel

=head1 DESCRIPTION

Class for handling a Markov model.

=cut


=pod

=item B<new()>

Create a new MarkovModel.

=cut
sub new {
    my ($class, %args) = @_;
    my $object = bless {
    	bg_pseudo=>0.01,
	}, $class;
    return $object;
}



=pod

=item B<get_supported_input_formats()>

Return input formats supported by the function load_from_file().

=cut
sub get_supported_input_formats { 
    my $class = ref($_[0]) || $_[0];
    return %{$class."::supported_input_formats"}; 
}

=pod

=item B<get_supported_output_formats()>

Return output formats supported by the function to_string().

=cut
sub get_supported_output_formats { 
    my $class = ref($_[0]) || $_[0];
    return %{$class."::supported_output_formats"}; 
}

=pod

=item B<get_supported_bg()>

Return the types of background models supported in pre-calculated RSAT background models.

=cut
sub get_supported_bg { 
    my $class = ref($_[0]) || $_[0];
    return %{$class."::supported_bg"}; 
}



=pod

=item B<load_from_file($bg_file, $format)>

Load the markov model from a file. 

In order to ensure case-insensivity, Markov models are automatically
converted to lowercases.

=cut
sub load_from_file {
  my ($self, $bg_file, $format) = @_;

  $format =~ s/oligo-analysis/oligos/;
  $format =~ s/dyad-analysis/dyads/;
  $format =~ s/^ms$/motifsampler/;
  $format =~ s/^inclusive$/motifsampler/;

  $self->force_attribute("strand", "undef");

  if ($format eq "oligos") {
    $self->load_from_file_oligos($bg_file);
  } elsif ($format eq "dyads") {
    $self->load_from_file_oligos($bg_file, 1); ## Dyads with spacing 0 are converted into oligos
  } elsif ($format eq "meme") {
    $self->load_from_file_meme($bg_file);
  } elsif ($format eq "motifsampler") {
    $self->load_from_file_MotifSampler($bg_file);
  } elsif ($format eq "") {
    &RSAT::error::FatalError(join("\t", "MarkovModel::load_from_file", 
				  "the format of the backgroun model must be specified"));
  } else {

    &RSAT::error::FatalError(join("\t", "MarkovModel::load_from_file", 
				  $format, "invalid format. Supported:",
				  join(",", @supported_input_formats)));
  }

  ## Add pseudo frequencies
#  $self->add_pseudo_freq();

  ## Compute normalized transition frequencies
  $self->normalize_transition_frequencies();


  ## Ensure case-insensitivity of the transitions for DNA
  my $seq_type = $self->get_attribute("seq_type") || "dna";
  if (lc($seq_type) eq "dna") {
    $self->case_insensitive_transitions();
  }
}

=pod

=item B<load_from_file_oligos($bg_file)>

Load the markov model from a result file from oligo-analysis. 

The model file is a tab-delimited text file indicating the expected
frequency of each word of length m+1, for a model of order m. These
files can be produced with the ccmmand oligo-analysis. When new
genomes are installed, background files are automatically calculated
for upstream sequences, and stored in
$RSAT/data/genomes/[Organism_name]/oligo-frequencies.

In order to ensure case-insensivity, Markov models are automatically
converted to lowercases.

=cut
sub load_from_file_oligos {
  my ($self, $bg_file, $dyad_conversion) = @_;

  &RSAT::message::TimeWarn("Loading Markov model from oligo file $bg_file") if ($main::verbose >= 4);

  my ($file_type, %patterns) = &main::ReadPatternFrequencies($bg_file) ;

  ################################################################
  ## For dyad input format, convert dyads into oligos: only retain
  ## dyads with spacing 0
  if ($dyad_conversion) {
    my %oligo_patterns;
    foreach my $dyad_seq (keys %patterns) {
      ## Dyads with spacing 0 are converted into oligos
      if ($dyad_seq =~ /n\{0\}/) {
	my $oligo_seq = $dyad_seq;
	$oligo_seq =~ s/n\{0\}//;
	$patterns{$oligo_seq} = $patterns{$dyad_seq};
      }
      delete $patterns{$dyad_seq};
    }
  }
  ## This is a bit tricky: ReadExpectedFrequencies sets a global variable
  ## $file_type to "2str" if the model is strand-insensitive/
  if ($file_type eq "2str") {
    $self->force_attribute("strand", "insensitive");
  } elsif ($file_type eq "1str") {
    $self->force_attribute("strand", "sensitive");
  } else {
    $self->force_attribute("strand", "undef");
  }

#   if ($main::verbose >= 5) {
#     foreach my $oligo_seq (sort(keys(%patterns))) {
#       &RSAT::message::Debug("Loaded oligo frequency", $oligo_seq,  $patterns{$oligo_seq}->{exp_freq});
#     }
#   }

  ## Specific treatment for insensitive-strand oligo-analysis files
  my $strand = $self->get_attribute("strand") || "undef";
  if ($strand eq "insensitive") {
    &RSAT::message::Info("Processing reverse palindrome frequencies", "strand", $strand) 
      if ($main::verbose >= 4);
    foreach my $oligo_seq (sort (keys(%patterns))) {
      my $pattern_freq =  $patterns{$oligo_seq}->{exp_freq};
      my $oligo_rc  = lc(&RSAT::SeqUtil::ReverseComplement($oligo_seq));

      ## Transition matrices do not really support the concept of
      ## strand-insensitivity, they reflect transition probabilities
      ## in a given orientation.  To fix this, when frequencies are
      ## loaded from strand-insensitive files, estimate single-strand
      ## frequencies from double-strand frequencies.
      ##
      ## In practice, we recommend to avoir loading frequency tables
      ## from strand-insensitive oligo files.
      next if ($oligo_rc eq $oligo_seq);
      $patterns{$oligo_seq}->{exp_freq} = $pattern_freq/2;
      &RSAT::message::Debug("non reverse palindrome",$oligo_seq,"freq from file", $pattern_freq,
			    "freq divided by 2", $patterns{$oligo_seq}->{exp_freq}) if ($main::verbose >= 4);
    }
  }

  $self->oligos_to_frequency_table(%patterns);
  #  &RSAT::message::Debug("MARKOV MODEL", $order, join (' ', keys(%patterns))) if ($main::verbose >= 5);
}

################################################################

=pod

=item B<oligos_to_frequency_table>

Convert oligomer frequencies into a prefix/suffix table (one row per
prefix, one column per suffix, each cell indicates the absolute
frequency of the prefix->suffix transition).

=cut
sub oligos_to_frequency_table {
  my ($self, %patterns) = @_;
  my @patterns = sort(keys(%patterns));
  my $pattern_len = length($patterns[0]);
  my $pattern_nb = scalar(keys(%patterns));
  my $order =  $pattern_len -1 ;	## Use the first pattern to calculate model order
  $self->force_attribute("order", $order); 
  &RSAT::message::Info("Converting oligos into frequency tables", $pattern_nb." patterns", "length", $pattern_len, "order", $order) 
   if ($main::verbose >= 4);

  foreach my $pattern_seq (@patterns) {
    my $pattern_freq =  $patterns{$pattern_seq}->{exp_freq};
    ## Check pattern length
    $pattern_seq = lc($pattern_seq); ## Ensure case-insensitivity
    $pattern_len = length($pattern_seq);
 #   &RSAT::message::Debug("oligos_to_frequency_table", $pattern_seq, $pattern_len, $pattern_freq,
#			  join(";", keys %{$patterns{$pattern_seq}})) if ($main::verbose >= 5);
    &RSAT::error::FatalError("All patterns should have the same length in a Markov model file.") 
      unless $pattern_len = $order+1;
    my $prefix = substr($pattern_seq,0,$order);
    my $suffix = substr($pattern_seq,$order, 1);
    $self->{oligo_freq}->{$prefix}->{$suffix} = $pattern_freq;
#    &RSAT::message::Debug("transition count", $prefix.".".$suffix, $pattern_freq, $self->{oligo_freq}->{$prefix}->{$suffix}) if ($main::verbose >= 10);
  }
}

################################################################
=pod 

=item B<transitions_to_oligo_frequencies>


Convert a prefix/suffix table into oligo frequencies.

The frequency table has one row per prefix, one column per suffix,
each cell indicates the absolute frequency of the prefix->suffix
transition. Oligos are obtained by concatenating each prefix with each suffix

=cut
sub transitions_to_oligo_frequencies {
  my ($self) = @_;
  &RSAT::message::Info("Converting transitions into oligo frequencies") if ($main::verbose >= 4);
  my %patterns = ();
  my @prefix = sort($self->get_prefixes());
  my @suffix = sort($self->get_suffixes());
  foreach my $prefix (sort (@prefix)) {
    foreach my $suffix (sort(@suffix)) {
      my $oligo_seq = $prefix.$suffix;
      my $oligo_freq = $self->{prefix_proba}->{$prefix}*$self->{transitions_no_pseudo}->{$prefix}->{$suffix};
      $self->{oligo_freq}->{$prefix}->{$suffix} = $oligo_freq;
      $patterns{$oligo_seq}->{exp_freq} = $oligo_freq;
#      &RSAT::message::Debug("transitions_to_oligo_frequencies", 
#			    $oligo_seq, $prefix."->".$suffix, $oligo_freq) if ($main::verbose >= 10);
      if ($self->get_attribute("pseudo_added")) {
	my $oligo_freq_pseudo = $self->{prefix_proba}->{$prefix}*$self->{transitions}->{$prefix}->{$suffix};
	$self->{oligo_freq_pseudo}->{$prefix}->{$suffix} = $oligo_freq_pseudo;
	$patterns{$oligo_seq}->{exp_freq_pseudo} = $oligo_freq_pseudo;
#	&RSAT::message::Debug("transitions_to_oligo_frequencies", 
#			      $oligo_seq, $prefix."->".$suffix, $oligo_freq) if ($main::verbose >= 10);
      }
    }
  }
  return %patterns;
}


=pod

=item B<load_from_file_meme($bg_file)>

Load the Markov model from a MEME background file.

MEME (http://meme.sdsc.edu/meme/) is a matrix-based pattern discovery
program developed by Tim Bailey, and supporting Marckov chain
background models. 

The MEME suite includes

 - I<fasta-get-markov>, which esimtates a background model
   from a sequence file.

 - I<meme>, for discovering new motifs from a sequence set.

 - I<mast>, for localizing known motifs in a sequence set.

 - a set of other utilities described in MEME documentation.

In order to ensure case-insensivity, Markov models are automatically
converted to lowercases.

=cut
sub load_from_file_meme {
  my ($self, $bg_file) = @_;

  &RSAT::message::TimeWarn("Loading Markov model from MEME background file $bg_file") if ($main::verbose >= 4);

  #    my ($file_type, %patterns) = &main::ReadPatternFrequencies($bg_file) ;

  my ($in, $dir) = &main::OpenInputFile($bg_file);
  my $max_order = 0;
  my $order  =0;
  my %freq = ();
  while (<$in>) {
    if (/^# order (\d+)/) {
      $order = $1;
      if ($order > $max_order) {
	## Meme bg files contain frequencies for all oligo lengths
	## from 0 to k=m+1 (where m the order of the Markov
	## chain). We only need the largest patterns, so we
	## reinitialize the frequency table after smaller words.
	%freq = ();
      }
      $max_order = &RSAT::stats::max($max_order, $order);
    } elsif (/^(\S+)\s+(\S+)/) {
      my $pattern_seq = $1;
      my $freq = $2;
      $freq{$pattern_seq} = $freq;
    }
  }
  close $in if ($bg_file);

  $order = $max_order;
  $self->force_attribute("order", $order);
  &RSAT::message::Info("Loading Markov model of order", $order) if ($main::verbose >= 4);

  ## Calculate alphabet from expected frequency keys
  foreach my $pattern_seq (keys %freq) {
    ## Check pattern length
    my $pattern_freq =  $freq{$pattern_seq};
    $pattern_seq = lc($pattern_seq);
    my $pattern_len = length($pattern_seq);
    #	&RSAT::message::Debug($pattern_seq, $pattern_len, $pattern_freq, 
    #			      join(";", keys %{$patterns{$pattern_seq}})) if ($main::verbose >= 10);
    &RSAT::error::FatalError("All patterns should have the same length in a Markov model file.") 
      unless $pattern_len = $order+1;
    my $prefix = substr($pattern_seq,0,$order);
    my $suffix = substr($pattern_seq,$order, 1);
    $self->{oligo_freq}->{$prefix}->{$suffix} = $pattern_freq;
    #	&RSAT::message::Debug("transition count", $prefix.".".$suffix, $pattern_freq, $self->{oligo_freq}->{$prefix}->{$suffix}) if ($main::verbose >= 10);

  }
  #    &RSAT::message::Debug("MARKOV MODEL", $order, join (' ', @patterns)) if ($main::verbose >= 5);
}


=pod

=item B<load_from_file_MotifSampler($bg_file)>

Load the markov model from a result file from MotifSampler.

These files are used by the various programs of the software suite
INCLUSive (http://homes.esat.kuleuven.be/~thijs/download.html),
developed by Gert Thijs.

This suite includes the program CreateBackgroundModel, which creates a
Markov model from a background sequence.

=cut

sub load_from_file_MotifSampler {
  my ($self, $bg_file) = @_;

  &RSAT::message::TimeWarn("Loading Markov model from MotifSampler file $bg_file") if ($main::verbose >= 4);

  my @prefixes = ();
  my @suffixes = qw(a c g t);
  my %prefix_proba = ();
  my %suffix_proba = ();

  my ($in, $dir) = &main::OpenInputFile($bg_file);
  while (<$in>) {
    next unless /\S/;		## Skip empty lines

    if (/^#Order\s*=\s*(\d+)/i) {
      ## Markov order
      my $order = $1;
      $self->force_attribute("order", $order);
      if ($order == 0) {
	@prefixes = ("");
      } else {
	@prefixes = &RSAT::SeqUtil::all_possible_oligos($order);
      }
      &RSAT::message::Info("Markov order", $order, scalar(@prefixes)." prefixes")
	if ($main::verbose >= 4);

    } elsif (/^#snf/i) {
      ## Single nucleotide frequencies
      &RSAT::message::Info("Reading single nucleotide probabilities") if ($main::verbose >= 4);
      my $line = (<$in>);
      chomp($line);
      my @probas = split (/\s+/, $line);
      foreach my $i (0..$#suffixes) {
	my $suffix= $suffixes[$i];
	my $proba= $probas[$i];
	$suffix_proba{$suffix} = $proba;
	&RSAT::message::Debug("letter proba", $suffix, $proba) if ($main::verbose >= 5);
      }
      $self->set_hash_attribute("suffix_count", %suffix_proba);
      $self->set_hash_attribute("suffix_proba", %suffix_proba);

    } elsif (/^#oligo frequency/i) {
      ## Prefix probabilities
      &RSAT::message::Info("Reading prefix probabilities") if ($main::verbose >= 4);
      foreach my $prefix (@prefixes) {
	my $proba = (<$in>);
	chomp($proba);
	$proba = &RSAT::util::trim($proba); ## Remove leading and trailing spaces
	$prefix_proba{$prefix} = $proba;
	&RSAT::message::Debug("prefix proba", $prefix, $proba) if ($main::verbose >= 5);
      }
      $self->set_hash_attribute("prefix_count", %prefix_proba);
      $self->set_hash_attribute("prefix_proba", %prefix_proba);


    } elsif (/^#transition matrix/i) {
      ## transition probabilities
#      &RSAT::message::Debug("Reading transition matrix") if ($main::verbose >= 5);
      foreach my $prefix (@prefixes) {
	my $line = (<$in>);
	chomp($line);
	@transition_proba = split(/\s+/, $line);
	foreach my $i (0..$#suffixes) {
	  my $suffix= $suffixes[$i];
	  my $proba= $transition_proba[$i];
	  $self->{oligo_freq}->{$prefix}->{$suffix} = $proba*$prefix_proba{$prefix};
	  $self->{transitions}->{$prefix}->{$suffix} = $proba*$prefix_proba{$prefix};
	  &RSAT::message::Debug("transition", $prefix, $prefix_proba{$prefix}, $suffix, $suffix_proba{$suffix}, $proba, ) if ($main::verbose >= 5);
	}
      }
    }
  }
  close $in if ($bg_file);
}



=pod

=item B<init_prefixes_and_suffixes>

Initiallize the arrays of prefixes and suffixes that will be used as
iterators for the subsequent processing.

=cut
sub init_prefixes_and_suffixes_bof {
  my ($self) = @_;


  ################################################################
  ## Ensure that all possible suffixes are taken into consideration
  my @possible_suffixes = @dna_alphabet;
  $self->set_array_attribute("suffixes", @possible_suffixes);
  my $alpha_size = scalar(@possible_suffixes);

  ################################################################
  ## Calculate all possible prefix oligomers, even those
  ## which are not observed in the input background model
  my @possible_prefixes;
  if ($self->{order} > 0) {
    @possible_prefixes  = &RSAT::SeqUtil::all_possible_oligos($self->{order}, @dna_alphabet);
  } elsif ($self->{order} == 0) {
    @possible_prefixes  = ("");
  }
  $self->set_array_attribute("prefixes", @possible_prefixes);
}


=pod

=item B<init_prefixes>

Initiallize an array of all possible prefixes for the Markov model,
that will be used as iterators for the subsequent processing.

=cut
sub init_prefixes {
  my ($self) = @_;

  ################################################################
  ## Define alphabet
  my $seq_type = $self->get_attribute("seq_type") || "dna";
  my @alphabet;
  if ($seq_type eq "protein") {
    @alphabet = @pept_alphabet;
  } else {
    @alphabet = @dna_alphabet;
  }

  ################################################################
  ## Calculate all possible prefix oligomers, even those
  ## which are not observed in the input background model
  my @possible_prefixes;
  if ($self->{order} > 0) {
    @possible_prefixes  = &RSAT::SeqUtil::all_possible_oligos($self->{order}, @alphabet);
  } elsif ($self->{order} == 0) {
    @possible_prefixes  = ("");
  }
  $self->set_array_attribute("prefixes", @possible_prefixes);
  $self->force_attribute("prefixes_initiated", 1);
}


=pod

=item B<get_prefixes>

Return the list of all possible prefixes. If necessary, run
$self->init_prefixes()

=cut
sub get_prefixes {
  my ($self) = @_;
  unless ($self->get_attribute("prefixes_initiated")) {
    $self->init_prefixes();
  }
  return $self->get_attribute("prefixes");
}

=pod

=item B<init_suffixes>

Initiallize an array of all possible suffixes for the Markov model,
that will be used as iterators for the subsequent processing.

=cut
sub init_suffixes {
  my ($self) = @_;

  ################################################################
  ## Define alphabet
  my $seq_type = $self->get_attribute("seq_type") || "dna";
  my @alphabet;
  if ($seq_type eq "protein") {
    @alphabet = @pept_alphabet;
  } else {
    @alphabet = @dna_alphabet;
  }

  ################################################################
  ## Ensure that all possible suffixes are taken into consideration
  $self->set_array_attribute("suffixes", @alphabet);
  $self->force_attribute("suffixes_initiated", 1);
  &RSAT::message::Debug("possible suffixes", join(",", @alphabet)) if ($main::verbose >= 3);
}

=pod

=item B<get_suffixes>

Return the list of all possible suffixes. If necessary, run
$self->init_suffixes()

=cut
sub get_suffixes {
  my ($self) = @_;
  unless ($self->get_attribute("suffixes_initiated")) {
    $self->init_suffixes();
  }
  return $self->get_attribute("suffixes");
}

=pod

=item B<calc_prefix_suffix_sums>

Compute the sum of oligomer frequencies (or occurrences) for each
possible prefix and suffix.

These sums will be used to compute relative frequencies and transition
frequencies.

=cut
sub calc_prefix_suffix_sums {
  my ($self) = @_;

  &RSAT::message::Info("Computing sums of oligo frequencies per prefix and suffix") if ($main::verbose >= 4);

  &RSAT::message::TimeWarn("Computing prefix and suffix sums") if ($main::verbose >= 4);
  my %prefix_sum = ();
  my %suffix_sum = ();
  my $p=0;			## Number of prefixes
  my $s=0;			## Number of suffixes
  my $strand = $self->get_attribute("strand") || "undef";

  %oligo_freq = $self->get_attribute("oligo_freq");

  my $freq_sum = 0;
  my @prefixes = $self->get_prefixes();
  my @suffixes = $self->get_suffixes();
  foreach my $prefix (@prefixes) {
    $p++;
    foreach my $suffix (@suffixes) {
      $s++;
      my $pattern_count = $oligo_freq{$prefix}->{$suffix} || 0;
      ## Increment frequencies
      $freq_sum += $pattern_count;
      $suffix_sum{$suffix} += $pattern_count;
      $prefix_sum{$prefix} += $pattern_count;

    }
  }

  $self->force_attribute("freq_sum", $freq_sum);
  $self->set_hash_attribute("prefix_sum", %prefix_sum);
  $self->set_hash_attribute("suffix_sum", %suffix_sum);

  ## Compute prefix probabilities
  my %prefix_proba = ();
  my $prefix_nb = scalar(@prefixes);
  foreach my $prefix (@prefixes) {
    $prefix_proba{$prefix} = $prefix_sum{$prefix}/$prefix_nb;
  }
  $self->set_hash_attribute("prefix_proba", %prefix_proba);

  ## Compute suffix probabilities
  my %suffix_proba = ();
  my $suffix_nb = scalar(@suffixes);
  foreach my $suffix (@suffixes) {
    $suffix_proba{$suffix} = $suffix_sum{$suffix}/$suffix_nb;
  }
  $self->set_hash_attribute("suffix_proba", %suffix_proba);

}

############################################################
=pod

=item B<add_pseudo_freq>

Add pseudo-frequencies to transition frequencies. This ensures that
each possible transition will have a non-null probability, even though
this transition might be absent from the sequence on which the Markov
model was trained.

=cut
sub add_pseudo_freq {
  my ($self) = @_;

  my $pseudo_freq = $self->get_attribute("bg_pseudo") || 0;

  ## If the pseudo frequency is null, avoid to compute and store a
  ## table of corrected oligo frequencies
#  unless ($pseudo_freq) {
#    $self->set_attribute("pseudo_freq_added", 0);
#    return();
#  }

  ## Make sure that all prefixes and suffixes are in the iterators
  my @prefixes = $self->get_prefixes();
  my @suffixes = $self->get_suffixes();
  my $alpha_size = scalar(@suffixes);

  &RSAT::message::Info("Adding pseudo frequencies",
		       scalar(@suffixes), "suffixes",
		       scalar(@prefixes), "prefixes",
		       ) if ($main::verbose >= 4);

  ## Calculate sums of prefixes and suffixes for uncorrected oligo frequencies
  $self->calc_prefix_suffix_sums();
  my $freq_sum = $self->get_attribute("freq_sum");

  ################################################################
  ## Compute pseudo-corrected sums per prefix
  &RSAT::message::Debug("Total prefix sum", $total_prefix_sum, $freq_sum) if ($main::verbose >= 5);
  my %prefix_sum_pseudo = ();
  my $prefix_pseudo_correction = $freq_sum*$pseudo_freq/scalar(@prefixes);
  foreach my $prefix (@prefixes) {
    $prefix_sum_pseudo{$prefix} = $self->{prefix_sum}->{$prefix}*(1-$pseudo_freq) + $prefix_pseudo_correction;
  }
  $self->set_hash_attribute("prefix_sum_pseudo", %prefix_sum_pseudo);

  ################################################################
  ## Compute pseudo-corrected sums per suffix
  my %suffix_sum_pseudo = ();
  my $suffix_pseudo_correction = $freq_sum*$pseudo_freq/scalar(@suffixes);
  foreach my $suffix (@suffixes) {
    $suffix_sum_pseudo{$suffix} = $self->{suffix_sum}->{$suffix}*(1-$pseudo_freq) + $suffix_pseudo_correction;
  }
  $self->set_hash_attribute("suffix_sum_pseudo", %suffix_sum_pseudo);


  ################################################################
  ## Update transition frequencies
  my $freq_sum_pseudo = 0;
  foreach my $prefix (@prefixes) {
    ## Compute the sum of transition counts for the current prefix
    my $prefix_sum = $self->{prefix_sum}->{$prefix};
    my $prefix_sum_pseudo = $self->{prefix_sum_pseudo}->{$prefix};

    ## pseudo count varies depending on the prefix sum
    my $pseudo_correction = $pseudo_freq*$prefix_sum_pseudo/$alpha_size;
#    my $pseudo_correction = $prefix_sum_pseudo/$alpha_size;

    ## Treat the cases where a prefix was absent from uncorrected
    ## frequencies
    foreach my $suffix (@suffixes) {
      my $oligo_freq =  $self->{oligo_freq}->{$prefix}->{$suffix}||0;

      ## Adding the pseudo-freq on the background model
      my $oligo_freq_pseudo;
      if ($prefix_sum > 0) {
	$oligo_freq_pseudo = (1-$pseudo_freq)*$oligo_freq*$prefix_sum_pseudo/$prefix_sum + $pseudo_correction;
#	$oligo_freq_pseudo = (1-$pseudo_freq)*$oligo_freq*$prefix_sum_pseudo/$prefix_sum + $pseudo_freq*$pseudo_correction;
      } else {
	## missing transitions
      	$oligo_freq_pseudo = $prefix_sum_pseudo/$alpha_size;
#      	$oligo_freq_pseudo = $pseudo_correction;
      }
      $self->{oligo_freq_pseudo}->{$prefix}->{$suffix} = $oligo_freq_pseudo;
      $freq_sum_pseudo += $oligo_freq_pseudo;
    }
  }

  $self->force_attribute("freq_sum_pseudo", $freq_sum_pseudo);
  $self->force_attribute("pseudo_added", 1);
}

=pod

=item B<normalize_transition_frequencies>

Normalize transition frequencies, i.e. make sure that, for each
prefix, the sum of transition frequencies (frequency of all possible
suffixes given the prefix) is 1.

=cut
sub normalize_transition_frequencies {
  my ($self, %args) = @_;

  &RSAT::message::TimeWarn(join("\t", "MarkovModel", "Normalizing transition frequencies")) if ($main::verbose >= 4);

  ## Add pseudo-counts to oligo-frequencies counts. This has to be done after the computation of prefix counts
  unless ($args{no_pseudo}) {
    $self->add_pseudo_freq();	### adding the pseudo-freq
  }
  $self->calc_prefix_suffix_sums();

  ## Store prefixes and suffixes in arrays for quick access
#  $self->set_array_attribute("prefixes", sort(keys(%prefix_sum)));
#  $self->set_array_attribute("suffixes", sort(keys(%suffix_sum)));
  my @prefixes = $self->get_prefixes();
  my @suffixes = $self->get_suffixes();

  ## Retrieve the prefix and suffix sums
  my $freq_sum = $self->get_attribute("freq_sum");
  my $freq_sum_pseudo = $self->get_attribute("freq_sum_pseudo");

  ## Calculate transition frequencies == Transition table with
  ## conditional probabilities
  my $missing_transitions = 0;
  foreach my $prefix ($self->get_prefixes()) {
    my $prefix_sum = $self->{prefix_sum}->{$prefix} || 0;
    my $prefix_sum_pseudo = $self->{prefix_sum_pseudo}->{$prefix} || 0;
    foreach my $suffix ($self->get_suffixes()) {
      #	foreach my $suffix (keys (%suffix_sum)) {
      my $oligo_freq = $self->{oligo_freq}->{$prefix}->{$suffix}||0;

      ## The uncorrected transitions (transitions_no_pseudo) can be
      ## used later for converting transitions to uncorrected oligo
      ## frequencies.
      if ($prefix_sum > 0) {
	$self->{transitions_no_pseudo}->{$prefix}->{$suffix} = $oligo_freq/$prefix_sum;
      } else {
	$self->{transitions_no_pseudo}->{$prefix}->{$suffix} = 0;
      }
      if ($oligo_freq == 0) {
	$missing_transitions++;
			&RSAT::message::Warning(join(" ",
						     "No transition between prefix",$prefix, 
						     "and suffix", $suffix)) if ($main::verbose >= 4);
      }

      ## I prefer to call the corrected transition frequencies
      ## "transitions", because these are the frequencies finally used
      ## for computing sequence probabilities with the bg model
      my $oligo_freq_pseudo = $self->{oligo_freq_pseudo}->{$prefix}->{$suffix}||0;
      if ($prefix_sum_pseudo > 0) {
	$self->{transitions}->{$prefix}->{$suffix} = $oligo_freq_pseudo/$prefix_sum_pseudo;
      } else {
	$self->{transitions}->{$prefix}->{$suffix} = 0;
      }
#      if ($self->get_attribute("pseudo_added")) {
#	my $oligo_freq_pseudo = $self->{oligo_freq_pseudo}->{$prefix}->{$suffix}||0;
#	$self->{transitions}->{$prefix}->{$suffix} = $oligo_freq_pseudo/$self->{prefix_sum_pseudo}->{$prefix};
#      }
    }
  }
  $self->force_attribute("missing_transitions", $missing_transitions);
  
  ## replace $freq_sum by a tiny value if equal 0, to prevent crashing of the program
  ## (case when many NNNN affect too much the background calculation)
  if ($freq_sum == 0) {$freq_sum = 0.000001;}
  if ($freq_sum_pseudo == 0) {$freq_sum_pseudo = 0.000001;}

  ## Calculate relative frequencies
  foreach my $prefix ($self->get_prefixes()) {
    foreach my $suffix ($self->get_suffixes()) {
      my $oligo_freq = $self->{oligo_freq}->{$prefix}->{$suffix} || 0;
      $self->{oligo_freq_rel}->{$prefix}->{$suffix} = $oligo_freq/$freq_sum; 

      my $oligo_freq_pseudo = $self->{oligo_freq_pseudo}->{$prefix}->{$suffix} || 0;
      $self->{oligo_freq_rel_pseudo}->{$prefix}->{$suffix} = $oligo_freq_pseudo/$freq_sum;
    }
  }

 


### removed by Morgane
#  ## Calculate suffix probabilities
#  my %suffix_proba = ();
#  foreach my $suffix ($self->get_suffixes()) {
#    $suffix_proba{$suffix} = $self->{suffix_sum}->{$suffix}/$freq_sum;
#  }
#  $self->set_hash_attribute("suffix_proba", %suffix_proba);
# ## Calculate prefix probabilities
#  my %prefix_proba = ();
#  foreach my $prefix ($self->get_prefixes()) {
#    #    foreach my $prefix (keys(%prefix_sum)) {
#    $prefix_proba{$prefix} = $self->{prefix_sum}->{$prefix}/$freq_sum;
#  }
#  $self->set_hash_attribute("prefix_proba", %prefix_proba);
    
 
  
### added by Morgane
  ## Calculate suffix probabilities
  my %suffix_proba = ();
  if ($self->get_attribute("pseudo_added")) {
  	foreach my $suffix ($self->get_suffixes()) {
    	$suffix_proba{$suffix} = $self->{suffix_sum_pseudo}->{$suffix}/$freq_sum_pseudo;
  		}
	  }else {
	  	$suffix_proba{$suffix} = $self->{suffix_sum}->{$suffix}/$freq_sum;
	  }
 $self->set_hash_attribute("suffix_proba", %suffix_proba);
 
  ## Calculate prefix probabilities
  my %prefix_proba = ();
  if ($self->get_attribute("pseudo_added")) {
  	foreach my $prefix ($self->get_prefixes()) {
    	$prefix_proba{$prefix} = $self->{prefix_sum_pseudo}->{$prefix}/$freq_sum_pseudo;
  		}
	  }else {
	  	$prefix_proba{$prefix} = $self->{prefix_sum}->{$prefix}/$freq_sum;
	  }
  $self->set_hash_attribute("prefix_proba", %prefix_proba);

  #    &RSAT::message::Debug("SUFFIX PROBA", $self->set_hash_attribute("suffix_proba", %suffix_proba)) if ($main::verbose >= 5);
  ## Average counts and frequencies on both strands if required
  #       my $strand = $self->get_attribute("strand") || "sensitive";
  #     if ($strand eq "insensitive") {
  # 	$self->average_strands();
  #     }

#  &RSAT::message::TimeWarn(join("\t", 
#				"Normalized background model", 
#				"prefixes: ".$p,
#				"transitions: ".$s)) if ($main::verbose >= 4);
}


=pod

=item B<check_missing_transitions>

Check that the transition matrix contains values >0 in all cells. If
not, report the number of missing transitions.

=cut 
sub check_missing_transitions {
    my ($self) = @_;

    my $missing_transitions = 0;
    foreach my $prefix ($self->get_prefixes()) {
	foreach my $suffix ($self->get_suffixes()) {
	    unless ((defined($self->{transitions}->{$prefix}->{$suffix})) 
		    && ($self->{transitions}->{$prefix}->{$suffix} > 0)) {
		$missing_transitions++;
		&RSAT::message::Warning(join(" ",
					     "No transition between prefix",$prefix, 
					     "and suffix", $suffix)) if ($main::verbose >= 4);
	    };
	}
    }
    $self->force_attribute("missing_transitions", $missing_transitions);
    if ($missing_transitions > 0) {
      &RSAT::message::Warning(join(" ", $missing_transitions,
				   "missing transitions in the transition matrix.",
				   "Over-fitting risk.You should better sequences or a lower order Markov model. ")) if
				     ($main::verbose >= 2);
    }
}

=pod

=item B<check_transition_alphabet>

Check the transition matrix to suppress residues which are not part of
the accepted alphabet. Such residues can be present in the sequence
for various reasons. For example, the sequence can contain stretches
of N corresponding to masked repeats.

=cut
sub check_transition_alphabet {
    my ($self) = @_;

    my $seq_type = $self->get_attribute("seq_type") || "dna";
    my %accepted_residues = &RSAT::SeqUtil::get_accepted_residues($seq_type);
    &RSAT::message::Info("Accepted residues", $seq_type, %accepted_residues) if ($main::verbose >= 4);

    my $accepted_expression = join ('', '^[', sort(keys(%accepted_residues)), ']*$');

    my %suppressed_prefixes = ();
    my %suppressed_suffixes = ();
    my %checked_prefixes = ();
    my %checked_suffixes = ();
    foreach my $prefix (keys(%{$self->{oligo_freq}})) {
#    foreach my $prefix ($self->get_prefixes()) {
      if ($prefix =~ /${accepted_expression}/) {
	$checked_prefixes{$prefix} = 1;
      } else {
	$suppressed_prefixes{$prefix}++;
#	delete $self->{transitions}->{$prefix};
	delete $self->{oligo_freq}->{$prefix};
	&RSAT::message::Info(join(" ",
				     "Supressing prefix",$prefix, 
				     "from transition matrix")) if ($main::verbose >= 5);
	next;
      }
      foreach my $suffix (keys(%{$self->{oligo_freq}->{$prefix}})) {
#      foreach my $suffix ($self->get_suffixes()) {
	$suppressed_suffixes{$suffix}++;
	if ($suffix =~ /${accepted_expression}/) {
	  $checked_suffixes{$suffix} = 1;
	} else {
	  delete $self->{transitions}->{$prefix}->{$suffix};
	  delete $self->{oligo_freq}->{$prefix}->{$suffix};
	  &RSAT::message::Info(join(" ",
				    "Supressing transition from",$prefix, "to", $suffix, 
				    "from transition matrix")) if ($main::verbose >= 5);
	}
      }
    }

    if (scalar(keys(%suppressed_prefixes)) > 0) {
      $self->set_array_attribute("prefixes", sort(keys(%checked_prefixes)));
      &RSAT::message::Info("Suppressed", scalar(keys(%suppressed_prefixes)),"prefixes, incompatible with sequence type", $seq_type)
	if ($main::verbose >= 4);
      &RSAT::message::Debug("Checked prefixes", join (",", $self->get_prefixes()),
			   ) if ($main::verbose >= 5);
    }
    if (scalar(keys(%suppressed_suffixes)) > 0) {
      $self->set_array_attribute("suffixes", sort(keys(%checked_suffixes)));
      &RSAT::message::Info("Suppressed", scalar(keys(%suppressed_suffixes)),"suffixes, incompatible with sequence type", $seq_type)
	if ($main::verbose >= 4);
    }


}



=pod

=item B<case_insensitive_transitions>

Convert transitions to lowercases in order to ensure case-insensitive
analysis.

=cut
sub case_insensitive_transitions {
  my ($self) = @_;
  
  my $seq_type = $self->get_attribute("seq_type") || "dna";
  my %accepted_residues = &RSAT::SeqUtil::get_accepted_residues($seq_type);
  &RSAT::message::Info("Accepted residues", $seq_type, %accepted_residues) if ($main::verbose >= 4);
  
  foreach my $prefix (keys(%{$self->{oligo_freq}})) {
    foreach my $suffix (keys(%{$self->{oligo_freq}->{$prefix}})) {
      $self->{transitions}->{lc($prefix)}->{lc($suffix)} = $self->{transitions}->{$prefix}->{$suffix};
      $self->{transitions}->{uc($prefix)}->{lc($suffix)} = $self->{transitions}->{$prefix}->{$suffix};
      $self->{transitions}->{lc($prefix)}->{uc($suffix)} = $self->{transitions}->{$prefix}->{$suffix};
      $self->{transitions}->{uc($prefix)}->{uc($suffix)} = $self->{transitions}->{$prefix}->{$suffix};
#      &RSAT::message::Debug("&RSAT::MarkovModel::case_insensitive_transitions()", "prefix=".$prefix, "suffix=".$suffix, "transition=".$self->{transitions}->{$prefix}->{$suffix}) if ($main::verbose >= 10);
    }
  }
#  die ("HELLO");
}


=pod

=item B<calc_from_seq($sequence, [add=>0|1])>

Calculate background model from a sequence.

If the argument add=>1 is specified, the new sequence is added to the
background model.

=cut
sub calc_from_seq {
  my ($self, $sequence, %args) = @_;
  my $seq_len = length($sequence);
  my $order = $self->get_attribute("order");
  $sequence = lc($sequence);
  my $previous_words = $self->get_attribute("training_words") || 0;

  if ($args{add}) {
    &RSAT::message::TimeWarn(join(" ",
				  "Updating markov model (order ".$order.")",
				  "by adding sequence of length", $seq_len)) if ($main::verbose >= 4);

  } else {
    $self->set_hash_attribute("oligo_counts",()); ## contains the words occurences, not frequencies
    $self->force_attribute("oligo_counts_defined", 1);
    if ($main::verbose >= 4) {
      &RSAT::message::TimeWarn(join(" ", 
				    "Calculating markov model (order ".$order.")",
				    "from sequence of length", $seq_len));
      &RSAT::message::Warning(join("", "RSAT::MarkovModel->calc_from_seq: sequence is too short (len=",$seq_len,
				   "). It must be larger than Markov order + 1 = ", $order+1))
	unless ($seq_len > $order + 1);
    }
  }

  ## count the occurences of the words on 1 strand
  my $last_pos = $seq_len - $order;
  for my $offset (0..($last_pos-1)) {
    my $prefix = substr($sequence, $offset, $order);
    my $suffix = substr($sequence, $offset + $order,1);
    $self->{oligo_counts}->{$prefix}->{$suffix}++;
  }
  $self->force_attribute("training_words", $last_pos + $previous_words);

  ## Delete transitions between letters which do not belong to the accepted alphabet
  $self->check_transition_alphabet();

#  ## Convert occurences (word count) into relative frequencies in order to add the pseudo-frequencies
#  ## as done when the bg model is read from a bg file, where relative frequencies (not word count) are
#  ## read from the file and used to calculate transition matrix.
#  foreach my $prefix (sort keys(%{$self->{oligo_counts}})) {
#    foreach my $suffix (sort keys(%{$self->{oligo_counts}->{$prefix}})) {
#      my $pattern_count = $self->{oligo_counts}->{$prefix}->{$suffix};
#      my $pattern_rel_freq = $pattern_count / $self->{training_words};
#      $self->{oligo_freq}->{$prefix}->{$suffix} = $pattern_rel_freq;
#    }
#  }

  ## Initialize transition frequencies
  $self->set_hash_attribute("transition_freq", %transition_count);

  ## Add pseudo frequencies
#  $self->add_pseudo_freq();
  
  $self ->counts_to_transitions();

}

=pod

=item B<two_words_update($added_word, $deleted_word)>

Update the model by adding a word and deleting another word. 

This invovles to update only a few transition frequencies : those including
the prefix of the added and deleted words. 

=cut
sub two_words_update {
  my ($self, $added_word, $deleted_word, $window_offset) = @_;

  my $pseudo_freq = $self->get_attribute("bg_pseudo");
#	my @dna_alphabet =  qw (a c g t);

  ## No need to update if added word equald deleted word
  return(0) if ($added_word eq $deleted_word);

    ## Update transition count for the added word
  my $added_prefix = substr($added_word, 0, $self->{order});
  my $added_suffix = substr($added_word, $self->{order}, 1);
  $self->{oligo_counts}->{$added_prefix}->{$added_suffix}++;
  if (($self->{oligo_counts}->{$added_prefix}->{$added_suffix} == 1) 
      &&($main::verbose >= 4)) {
    &RSAT::message::Warning(join (" ", "Model update:", $added_word, 
				  "appeared in updated window starting at", $window_offset));
  }
   

  ## Update transition count for the deleted word
  my $deleted_prefix = substr($deleted_word, 0, $self->{order});
  my $deleted_suffix = substr($deleted_word, $self->{order}, 1);
  $self->{oligo_counts}->{$deleted_prefix}->{$deleted_suffix}--;
  if (($self->{oligo_counts}->{$deleted_prefix}->{$deleted_suffix} == 0) 
      &&($main::verbose >= 4)) {
    &RSAT::message::Warning(join (" ", "Model update:", $deleted_word, 
				  "disappeared from updated window starting at", $window_offset));
  }


  ## Update relative frequencies for the added and deleted prefix
  ## added prefix
  my $added_pattern_count = $self->{oligo_counts}->{$added_prefix}->{$added_suffix};	
  my $added_pattern_rel_freq = $added_pattern_count / $self->{training_words};
  $self->{oligo_freq}->{$added_prefix}->{$added_suffix} = $added_pattern_rel_freq;
  ##pseudo-count
  my $added_pattern_pseudo_freq = 
    ((1 - $pseudo_freq)*$self->{oligo_freq}->{$added_prefix}->{$added_suffix}) + $pseudo_freq/scalar(@dna_alphabet);
  $self->{oligo_freq}->{$added_prefix}->{$added_suffix} = $added_pattern_pseudo_freq;
  ## prefix sum
  $self->{prefix_sum}->{$added_prefix} = 0;
  foreach my $suffix (sort keys (%{$self->{oligo_freq}->{$added_prefix}})) {
    my $pattern_count = $self->{oligo_freq}->{$added_prefix}->{$suffix};	  
    $self->{prefix_sum}->{$added_prefix} += $pattern_count;
  }
	
  ## deleted prefix
  my $deleted_pattern_count = $self->{oligo_counts}->{$deleted_prefix}->{$deleted_suffix};	    
  my $deleted_pattern_rel_freq = $deleted_pattern_count / $self->{training_words};
  $self->{oligo_freq}->{$deleted_prefix}->{$deleted_suffix} = $deleted_pattern_rel_freq;
  ##pseudo-count
  my $deleted_pattern_pseudo_freq = 
    ((1 - $pseudo_freq)*$self->{oligo_freq}->{$deleted_prefix}->{$deleted_suffix}) + $pseudo_freq/scalar(@dna_alphabet);
  $self->{oligo_freq}->{$deleted_prefix}->{$deleted_suffix} = $deleted_pattern_pseudo_freq;
  ## prefix sum
  $self->{prefix_sum}->{$deleted_prefix} = 0;
  foreach my $suffix (sort keys (%{$self->{oligo_freq}->{$deleted_prefix}})) {
    my $pattern_count = $self->{oligo_freq}->{$deleted_prefix}->{$suffix};	    
    $self->{prefix_sum}->{$deleted_prefix} += $pattern_count;
  }

  ## Update transition frequencies for the added and deleted prefix 
  foreach my $suffix (sort keys (%{$self->{oligo_freq}->{$added_prefix}})) {
    $self->{transitions}->{$added_prefix}->{$suffix} = 
      $self->{oligo_freq}->{$added_prefix}->{$suffix}/$self->{prefix_sum}->{$added_prefix};	  
  }
  foreach my $suffix (sort keys (%{$self->{oligo_freq}->{$deleted_prefix}})) {
    $self->{transitions}->{$deleted_prefix}->{$suffix} = 
      $self->{oligo_freq}->{$deleted_prefix}->{$suffix}/$self->{prefix_sum}->{$deleted_prefix};	  
  }
    
  #     &RSAT::message::Debug("Updated model", 
  # 			  "added",$added_word,
  # 			  $added_prefix, 
  # 			  $self->{prefix_sum}->{$added_prefix},
  # 			  $added_suffix,
  # 			  $self->{transitions}->{$added_prefix}->{$added_suffix},
  # 			  "deleted", $deleted_word,
  # 			  $deleted_prefix, 
  # 			  $self->{prefix_sum}->{$deleted_prefix},
  # 			  $deleted_suffix,
  # 			  $self->{transitions}->{$deleted_prefix}->{$deleted_suffix},
  # 			  ) if ($main::verbose >= 10);
}

=pod

=item B<one_word_update($word, $mode,$window_offset)>

Update the model by adding or deleting a word depending on the choen mode. 

This invovles to update only a few transition frequencies : those including
the prefix of the word involved. 


=cut
sub one_word_update {
  my ($self, $word, $mode,$window_offset) = @_;

  my $pseudo_freq = $self->get_attribute("bg_pseudo");
#  my @dna_alphabet =  qw (a c g t);

  ## Update transition count for the added word
  my $curr_prefix = substr($word, 0, $self->{order});
  my $curr_suffix = substr($word, $self->{order}, 1);

  if ($mode eq "add") {
    $self->{oligo_counts}->{$curr_prefix}->{$curr_suffix}++;
    if (($self->{oligo_counts}->{$curr_prefix}->{$curr_suffix} == 1) 
	&&($main::verbose >= 4)) {
      &RSAT::message::Warning(join (" ", "Model update: add", $word, 
				    "appeared in updated window starting at", $window_offset));
    }
  } elsif ($mode eq "delete") {
    $self->{oligo_counts}->{$curr_prefix}->{$curr_suffix}--;
    if (($self->{oligo_counts}->{$curr_prefix}->{$curr_suffix} == 0) 
	&&($main::verbose >= 4)) {
      &RSAT::message::Warning(join (" ", "Model update: delete", $word, 
				    "disappeared from updated window starting at", $window_offset));
    }
  }

  &RSAT::message::Debug("updated absolute count",Dumper($self->{oligo_counts})) if ($main::verbose >= 5 );
  
#  ## Update relative frequencies for the added and deleted prefix
#  my $curr_pattern_count = $self->{oligo_counts}->{$curr_prefix}->{$curr_suffix};	
#  my $curr_pattern_rel_freq = $curr_pattern_count / $self->{training_words};
#  $self->{oligo_freq}->{$curr_prefix}->{$curr_suffix} = $curr_pattern_rel_freq;
#  
#  ## Convert counts to transition frequencies
#  $self->normalize_transition_frequencies();
#  
#    my $strand = $self->get_attribute("strand") || "sensitive";
#  if ($strand eq "insensitive")  { #Beware here : 2str means that matrix-scan a
#      	$self->average_strands();
#   }
#  &RSAT::message::Debug($self->to_string("tables", comment_string=>"; ")) if ($main::verbose >= 10);
#  
#  
#  ##pseudo-count
#  my $curr_pattern_pseudo_freq = 
#    ((1 - $pseudo_freq)*$self->{oligo_freq}->{$curr_prefix}->{$curr_suffix}) + $pseudo_freq/scalar(@dna_alphabet);
#  $self->{oligo_freq}->{$curr_prefix}->{$curr_suffix} = $curr_pattern_pseudo_freq;
#
#  ## prefix sum
#  $self->{prefix_sum}->{$curr_prefix} = 0;
#  foreach my $suffix (sort keys (%{$self->{oligo_freq}->{$curr_prefix}})) {
#    my $pattern_count = $self->{oligo_freq}->{$curr_prefix}->{$suffix};	  
#    $self->{prefix_sum}->{$curr_prefix} += $pattern_count;
#  }
#
#
#  ## Update transition frequencies for the added and deleted prefix 
#  foreach my $suffix (sort keys (%{$self->{oligo_freq}->{$curr_prefix}})) {
#    $self->{transitions}->{$curr_prefix}->{$suffix} = 
#      $self->{oligo_freq}->{$curr_prefix}->{$suffix}/$self->{prefix_sum}->{$curr_prefix};	  
#  }

  #     &RSAT::message::Debug("Updated model", 
  # 			  "added",$added_word,
  # 			  $added_prefix, 
  # 			  $self->{prefix_sum}->{$added_prefix},
  # 			  $added_suffix,
  # 			  $self->{transitions}->{$added_prefix}->{$added_suffix},
  # 			  "deleted", $deleted_word,
  # 			  $deleted_prefix, 
  # 			  $self->{prefix_sum}->{$deleted_prefix},
  # 			  $deleted_suffix,
  # 			  $self->{transitions}->{$deleted_prefix}->{$deleted_suffix},
  # 			  ) if ($main::verbose >= 10);
}

=pod

=item B<counts_to_transitions()>

Calculates the transition matrix, from word counts that arise
from calc-from-seq or after one-word update.

This function permits to update several times the word counts,
and upadet the transition matrix only one time.


=cut
sub counts_to_transitions {
  my ($self) = @_;
  
  ## Convert occurences (word count) into relative frequencies in order to add the pseudo-frequencies
  ## as done when the bg model is read from a bg file, where relative frequencies (not word count) are
  ## read from the file and used to calculate transition matrix.
  foreach my $prefix (sort keys(%{$self->{oligo_counts}})) {
    foreach my $suffix (sort keys(%{$self->{oligo_counts}->{$prefix}})) {
      my $pattern_count = $self->{oligo_counts}->{$prefix}->{$suffix};
      my $pattern_rel_freq = $pattern_count / $self->{training_words};
      $self->{oligo_freq}->{$prefix}->{$suffix} = $pattern_rel_freq;
    }
  }
  

  ## Convert counts to transition frequencies
  $self->normalize_transition_frequencies();
  
  ## Ensure case-insensitivity of the transitions for DNA
  my $seq_type = $self->get_attribute("seq_type") || "dna";
  if (lc($seq_type) eq "dna") {
    $self->case_insensitive_transitions();
  }

  my $strand = $self->get_attribute("strand") || "sensitive";
  	if ($strand eq "insensitive")  { #Beware here : 2str means that matrix-scan a
      	$self->average_strands();
   	}
  &RSAT::message::Debug($self->to_string("tables", comment_string=>"; ")) if ($main::verbose >= 10);
  
}


=pod

=item B<to_string($format, %args)>

Return a string describing the transition matrix.

Supported formats:

=over

=item tab

tab-delimited format

=item patser

Format supported by the programs patser and consensus, developed by
Gerald Z. Hertz.

=item MotifSampler

See input formats for description. 

=item oligos

See input formats for description. 

=back

=cut

sub to_string {
    my ($self, $format, %args) = @_;

    $format =~ s/oligo-analysis/oligos/;
    $format =~ s/^ms$/motifsampler/;
    $format =~ s/^inclusive$/motifsampler/;


    if ($format eq ("tab")) {
      &RSAT::message::Warning("Output format tab is deprecated, please use format transitions instead.");
      $self->to_prefix_suffix_table(%args, type=>"transitions");

    } elsif ($format eq ("transitions")) {
      $self->to_prefix_suffix_table(%args, type=>"transitions");

    } elsif ($format eq ("tables")) {
      my $string = "";

      ## Original frequencies
      $string .= ";\n; Original oligomer frequencies\n";
      $string .= $self->to_prefix_suffix_table(%args, type=>"oligo_freq");

      ## Relative frequencies
      $string .= ";\n; Relative oligomer frequencies\n";
      $string .= $self->to_prefix_suffix_table(%args, type=>"oligo_freq_rel");

      ## Transition frequencies
      $string .= ";\n; Uncorrected transition frequencies\n";
      $string .= $self->to_prefix_suffix_table(%args, type=>"transitions_no_pseudo");

      if ($self->get_attribute("pseudo_added")) {
	## Pseudo-count corrected frequencies
	$string .= ";\n; Pseudo-count corrected oligomer frequencies\n";
	$string .= $self->to_prefix_suffix_table(%args, type=>"oligo_freq_pseudo");

	## Pseudo-count corrected relative frequencies
	$string .= ";\n; Pseudo-count corrected relative oligomer frequencies\n";
	$string .= $self->to_prefix_suffix_table(%args, type=>"oligo_freq_rel_pseudo");

	## Pseudo-count corrected transition frequencies
	$string .= ";\n; Pseudo-count corrected transition frequencies\n";
	$string .= $self->to_prefix_suffix_table(%args, type=>"transitions");
      } else {
	$string .= ";\n; Null pseudo-frequency -> no corrected frequencies.\n;\n";
      }

      ## Oligo counts
      if ($self->get_attribute("oligo_counts_defined")) {
	$string .= ";\n; Oligo counts\n";
	$string .= $self->to_prefix_suffix_table(%args, type=>"oligo_counts");
      }

      return $string;

    } elsif ($format eq ("oligos")) {
	$self->to_string_oligos(%args); 
    } elsif ($format eq ("meme")) {
	$self->to_string_meme(%args); 
    } elsif ($format eq ("motifsampler")) {
	$self->to_string_MotifSampler(%args); 
    } elsif ($format eq ("patser")) {
	$self->to_string_patser(%args); 
    } elsif ($format eq "") {
	&RSAT::error::FatalError(join("\t", "MarkovModel::to_string()", 
				      "the format of the backgroun model must be specified"));
    } else {
	&RSAT::error::FatalError(join("\t", "MarkovModel::to_string()", 
				      $format, "invalid output format for a background model. Supported:",
				      join(",", @supported_output_formats)));
    }
}


=pod

=item B<to_prefix_suffix_table(%args)>

Export the Markov model in a tab-delimited format.

Supported arguments: comment_string, decimals

Usage:
  my $transition_table = $bg_model->to_prefix_suffix_table();
  my $transition_table = $bg_model->to_prefix_suffix_table(decimals=>3,comment_string="#");
  my $transition_table = $bg_model->to_prefix_suffix_table(type=>"transitions");
  my $transition_table = $bg_model->to_prefix_suffix_table(type=>"frequencies");

=cut
sub to_prefix_suffix_table {
    my ($self, %args) = @_;
    my $decimals = $args{decimals} || "5";
    my $string = "";
    my $type = $args{type} || "transitions";
    my @prefix = sort($self->get_prefixes());
    my @suffix = sort($self->get_suffixes());
    my $row_name_len = &RSAT::stats::max(5,$self->get_attribute("order"));

    &RSAT::message::Debug("prefix/suffix table","type",
			  $type,
			  scalar(@prefix)." prefixes",
			  scalar(@suffix)." suffixes",
			 ) if ($main::verbose >= 3);

    ## Print header
    $string .= join ("\t", "#pr\\suf",
		     @suffix,
		     "Sum",
		     "P_prefix",
		    );
    $string .= "\n";

    ## Print transition frequencies and sum and proba per prefix
    my %suffix_sum = ();
    my $table_prefix_sum = 0;
    foreach my $prefix (@prefix) {
	if (defined($args{comment_string})) {
	    $string .= $args{comment_string};
	}
	if ($prefix eq "") {
	  $string .= ".";
	} else {
	  $string .= $prefix;
	}

	my $prefix_sum = 0;
	foreach my $suffix (@suffix) {
	  my $value =  $self->{$type}->{$prefix}->{$suffix} || 0;
	  $prefix_sum += $value;
	  $suffix_sum{$suffix} += $value;
	  if (&RSAT::util::IsInteger($value)) {
	    $string .= sprintf "\t%d", $value;
	  } else {
	    $string .= sprintf "\t%.${decimals}f", $value;
	  }
	}
	$table_prefix_sum += $prefix_sum;

	if (&RSAT::util::IsNatural($prefix_sum)) {
	  my $print_prefix_sum = sprintf("%.0f",$prefix_sum);  #    $string .= sprintf "\t%d", $prefix_sum;
	  $string .= "\t".$print_prefix_sum;
	} elsif (&RSAT::util::IsReal($prefix_sum)) {
	  $string .= sprintf "\t%.${decimals}f", $prefix_sum;
	} else {
	  $string .= "\t".$prefix_sum;
	}

	## Print prefix probabilities
# 	if($type eq "oligo_freq") {
# 	  $string .= "\t".$self->{prefix_sum}->{$prefix};
# 	} elsif($type eq "oligo_freq_pseudo") {
# 	  $string .= "\t".$self->{prefix_sum_pseudo}->{$prefix};
# 	} elsif($type eq "oligo_freq_rel") {
	$string .= sprintf("\t%.3g", $self->{prefix_proba}->{$prefix});
# 	}

	$string .= "\n";

    }

    ## Print suffix sums
    $string .= sprintf("; %-${row_name_len}s", "Sum");

    my $table_suffix_sum = 0;
    foreach my $suffix (@suffix) {
      my  $suffix_sum =   $suffix_sum{$suffix} || 0;
      $table_suffix_sum += $suffix_sum;
      if (&RSAT::util::IsNatural($suffix_sum)) {
      	my $print_suffix_sum = sprintf("%.0f",$suffix_sum);  #    	$string .= sprintf "\t%d",  $suffix_sum;
      	$string .= "\t".$print_suffix_sum;
      } elsif (&RSAT::util::IsReal($suffix_sum)) {
	$string .= sprintf "\t%g",  $suffix_sum;
      } else {
	$string .= "\t".$suffix_sum;
      }
    }

    ## Print the corner sums
    if (&RSAT::util::IsNatural($table_suffix_sum)) {
      my $print_suffix_sum = sprintf("%.0f",$table_suffix_sum);  #   $string .= sprintf "\t%d",  $table_suffix_sum;
 #     &RSAT::message::Debug("table suffix sum","calculated:", $table_suffix_sum,
 #						"printed: ",$print_suffix_sum ) if ($main::verbose >= 5);     
      $string .= "\t".$print_suffix_sum;
    } elsif (&RSAT::util::IsReal($table_suffix_sum)) {
      $string .= sprintf "\t%.${decimals}f",  $table_suffix_sum;
    } else {
      $string .= "\t".$table_suffix_sum;
    }

    $string .= " \\ ";
    if (&RSAT::util::IsNatural($table_prefix_sum)) {
      my $print_pref_sum = sprintf("%.0f",$table_prefix_sum);   #$string .= sprintf "%d",  $table_prefix_sum; 
  #    &RSAT::message::Debug("table prefix sum","calculated:", $table_prefix_sum,
 #						"printed: ",$print_pref_sum ) if ($main::verbose >= 5);   
      $string .= $print_pref_sum;
    } elsif (&RSAT::util::IsReal($table_prefix_sum)) {
      $string .= sprintf "%.${decimals}f",  $table_prefix_sum;
    } else {
      $string .= "".$table_prefix_sum;
    }
    $string .= "\n";

    ## Print suffix probabilities
    $string .= sprintf("; %-${row_name_len}s", "P_res");
    foreach my $suffix (@suffix) {
      $string .= sprintf "\t%.${decimals}f",  $self->{suffix_proba}->{$suffix};
    }
    $string .= "\n";


    return $string;
}


=pod

=item B<to_string_oligos(%args)>

Convert the Markov model into oligomer frequencies.

A Markov model of order m will generate a frequency table for
oligomers of length k=m+1.

=cut
sub to_string_oligos {
  my ($self, %args) = @_;
  my $decimals = $args{decimals} || "8";
  my $string = "";
  my $order = $self->get_attribute("order");
  my $strand = $self->get_attribute("strand") || "sensitive";
  if ($strand eq "insensitive") {
    $string .= join("\t", "#seq", "seq|revcpl", "freq");
  } else {
    $string .= join("\t", "#seq", "id", "freq");
  }
  $string .= "\n";


  &RSAT::message::Info("Exporting Markov model", "order", $order, "strand", $strand) 
    if ($main::verbose >= 4);

  ## Compute oligomer frequencies from the prefix prior proba + transition proba
  my %patterns = $self->transitions_to_oligo_frequencies();
  foreach my $oligo_seq (sort (keys(%patterns))) {
  		my $oligo_rc = "";
    if ($strand eq "insensitive") {
      $oligo_rc = lc(&RSAT::SeqUtil::ReverseComplement($oligo_seq));
      next if ($oligo_rc lt $oligo_seq);
      $string .= $oligo_seq;
      $string .= "\t".$oligo_seq;
      $string .= "|";
      $string .= $oligo_rc; 
    } else {
      $string .= $oligo_seq;
      $string .= "\t".$oligo_seq;
    }
    my $oligo_freq = 0;
    if ($self->get_attribute("pseudo_added")) {
      $oligo_freq = $patterns{$oligo_seq}->{exp_freq_pseudo};
      if ($strand eq "insensitive"){
      	$oligo_freq += $patterns{$oligo_rc}->{exp_freq_pseudo}
      	if ($oligo_rc ne $oligo_seq); ## do not add the frequencies of reverse palindromes;	
      } 
      #&RSAT::message::Debug("word",$oligo_seq, "rc",$oligo_rc, "oligo_freq",$oligo_freq) if ($main::verbose >= 5);    
    } else {
      $oligo_freq = $patterns{$oligo_seq}->{exp_freq};
      if ($strand eq "insensitive"){  	
      	$oligo_freq += $patterns{$oligo_rc}->{exp_freq}
      	if ($oligo_rc ne $oligo_seq); ## do not add the frequencies of reverse palindromes;	
      } 
    }
    $string .= sprintf "\t%.${decimals}f",  $oligo_freq;
#&RSAT::message::Debug("string",sprintf "\t%.${decimals}f",  $oligo_freq ) if ($main::verbose >= 5);      
    $string .= "\n";
  }
  return $string;
}


=pod

=item B<to_string_meme(%args)>

Convert the Markov model into oligomer frequencies in the MEME
format. 

A Markov model of order m corresponds a frequency table for oligomers
of length k=m+1. The MEME format includes oligomer frequency tables
for all k-mers from k=1 to k=m+1.

=cut
sub to_string_meme {
  my ($self, %args) = @_;
  my $decimals = $args{decimals} || "3";
  my $string = "";
  my %prefix_proba = $self->get_attribute("prefix_proba");
  my @prefix = sort($self->get_prefixes());
  my %suffix_sum = $self->get_attribute("suffix_sum");
  my @suffix = sort($self->get_suffixes());

  my $order = $self->get_attribute("order");

  ## Print residue frequencies
  $string .= "# order 0\n";
  foreach my $suffix (sort @suffix) {
    $string .= sprintf "%s %.${decimals}e\n", uc($suffix),  $self->{suffix_proba}->{$suffix};
  }

  if ($order > 0) {
    ## Estimate subword frequencies from prefix frequencies
    foreach my $i (2..$order) {
      $string .= "# order ".($i-1)."\n";
      my %freq = ();
      foreach my $prefix (@prefix) {
	my $prefix_proba = $self->{prefix_proba}->{$prefix};
	my $subword = substr($prefix,0, $i);
	$freq{$subword} += $prefix_proba;
      }
      foreach my $oligo (sort keys %freq) {
	$string .= uc($oligo);
	$string .= sprintf " %.${decimals}e",  $freq{$oligo};
	$string .= "\n";
      }
    }

    ## Calculate oligomer frequencies from prefix+suffix frequencies
    $string .= "# order ".$order."\n";
    foreach my $prefix (sort (@prefix)) {
      foreach my $suffix (sort(@suffix)) {
	my $oligo = $prefix.$suffix;
	my $oligo_freq = $self->{prefix_proba}->{$prefix}*$self->{transitions}->{$prefix}->{$suffix};
	$string .= uc($oligo);
	$string .= sprintf " %.${decimals}e",  $oligo_freq;
	$string .= "\n";
      }
    }
  }
  return $string;
}


=pod

=item B<to_string_MotifSampler(%args)>

Export the Markov model in  MotifSampler format.

Supported arguments: comment_string, decimals

=cut
sub to_string_MotifSampler {
    my ($self, %args) = @_;
    my $decimals = $args{decimals} || "5";
    my $string = "";
    my %prefix_proba = $self->get_attribute("prefix_proba");
    my @prefix = sort($self->get_prefixes());

    my %suffix_sum = $self->get_attribute("suffix_sum");
    my @suffix = sort($self->get_suffixes());

    ## Print header
    $string .= join ("\n", 
		     "#INCLUSive Background Model v1.0",
		     "#",
		     "#Order = ".$self->get_attribute("order"),
		     "#Organism = unknown",
		     "#Sequences = ",
		     "#Path = ",
		     "#");
    $string .= "\n";

    ## Single nucleotide frequencies
    $string .= "\n#snf\n";
    foreach my $suffix (@suffix) {
      push @suffix_proba, sprintf "%.${decimals}f",  $self->{suffix_proba}->{$suffix};
    }
    $string .= join ("\t", @suffix_proba);
    $string .= "\n";

    ## Prefix probabilities

    ## Particularity of MotifSampler format for oder 0: all oligos are exported as prefix
    $string .= "\n#oligo frequency\n";
    if ($self->{order}==0) {
      foreach my $suffix (@suffix) {
	push @prefix_proba, sprintf "%.${decimals}f",  $self->{suffix_proba}->{$suffix};
      }
    } else {
      foreach my $prefix (@prefix) {
	push @prefix_proba, sprintf "%.${decimals}f",  $self->{prefix_proba}->{$prefix};
      }
    }
    $string .= join ("\n", @prefix_proba);
    $string .= "\n";

    ## Print transition frequencies and sum and proba per prefix

    ## Particularity of MotifSampler format for oder 0: the oligo frequencies are repeated 4 times
    if ($self->{order}==0) {
      @prefix = ("","","","");
    }

    $string .= "\n#transition matrix\n";
    foreach my $prefix (@prefix) {
      my @transitions = ();
      foreach my $suffix (@suffix) {
	push @transitions, sprintf "%.${decimals}f",  $self->{transitions}->{$prefix}->{$suffix};
      }
      $string .= join ("\t", @transitions);
      $string .= "\n";
    }

    return $string;
}


=pod

=item B<to_string_patser>

Export the Markov model in patser format.  

WARNING: patser only supports Bernoulli models ! If the Markov order is
superior to 0, this function issues a fatal error.

=cut
sub to_string_patser {
    my ($self, %args) = @_;
    my $string = "";
    my $decimals = $args{decimals} || "5";
    my @prefix = sort($self->get_prefixes());
    my @suffix = sort($self->get_suffixes());

    ## Check that the model is Bernoulli (Markov order = 0)
    &RSAT::error::FatalError(join("\t",
				  "MarkovModel::to_string_patser()",
				  "The patser format only supports Bernoulli models (Markov order must be 0)"
				  ))
	unless ($self->get_attribute("order") == 0);

    ## The output format differs between strand-sensitive and strand-insensitive models
    my $strand = $self->get_attribute("strand");
    if ($strand eq "insensitive") {
	foreach my $prefix (@prefix) {
 	    foreach my $suffix (@suffix) {
		my $suffix_rc = lc(&main::SmartRC($suffix));

		next if ($suffix gt $suffix_rc);
		if (defined($args{comment_string})) {
		    $string .= $args{comment_string};
		}
		$string .= $suffix.":".$suffix_rc;
		$string .= sprintf ("\t%.${decimals}f\n",$self->{transitions}->{$prefix}->{$suffix});
	    }
	}

    } else {
	foreach my $prefix (@prefix) {
	    foreach my $suffix (@suffix) {
		if (defined($args{comment_string})) {
		    $string .= $args{comment_string};
		}
		$string .= $suffix;
		$string .= sprintf ("\t%.${decimals}f\n",$self->{transitions}->{$prefix}->{$suffix});
	    }
	}
    }
    return $string;

}


=pod

=item B<average_strands>

Average transition frequencies between pairs of reverse complements,
in order to obtain a strand-insensitive model.

The averaging is performed in 3 steps

 - convert the transition matrix (order m) into oligo frequencies
   (k=m+1).
 - average oligo frequencies
 - convert averaged oligo frequencies into transition matrix

=cut
sub average_strands {
  my ($self) = @_;


  ## The transition table first needs to be filled up
 # $self->normalize_transition_frequencies(no_pseudo=>1);

  &RSAT::message::Info(join("\t", "MarkovModel", "Averaging transition frequencies on both strands."))
    if ($main::verbose >= 4);

  ## Get (supposedly strand-sensitive) oligo frequencies from the
  ## transition matrix
  my %patterns_1str = $self->transitions_to_oligo_frequencies();

  ## Compute strand-insensitive oligo frequencies
  my %patterns_2str = ();
  foreach my $pattern (keys(%patterns_1str)) {
    my $pattern_rc = lc(&main::SmartRC($pattern));
    if ($pattern lt $pattern_rc) {
      $patterns_2str{$pattern}->{exp_freq} =
	$patterns_2str{$pattern_rc}->{exp_freq} =
	($patterns_1str{$pattern}->{exp_freq} +
	  $patterns_1str{$pattern_rc}->{exp_freq})/2;
    } elsif ($pattern eq $pattern_rc) {
      $patterns_2str{$pattern}->{exp_freq} = $patterns_1str{$pattern}->{exp_freq};
    }
  }

#   if ($main::verbose >= 10) {
#     foreach my $pattern (sort (keys(%patterns_2str))) {
#       &RSAT::message::Debug("oligo frequency", $pattern,  
# 			    $patterns_1str{$pattern}->{exp_freq}, 
# 			    "strand-insensitive", $patterns_2str{$pattern}->{exp_freq}
# 			   );
#     }
#   }

  $self->oligos_to_frequency_table(%patterns_2str);
  $self->force_attribute("strand", "insensitive");


  ## Add pseudo frequencies
#  $self->add_pseudo_freq();

  ## normalize the motified transition frequencies
## changed by Morgane
#  $self->normalize_transition_frequencies(no_pseudo=>1);
 $self->normalize_transition_frequencies();
}



=pod

=item B<segment_proba($sequence)>

Calculate the probability of a segment of sequence. The sequence segment must
by larger than the Markov order + 1.

Simple usage:

 my ($seq_proba) = $bg_model->segment_proba($sequence);

where $sequence is a DNA sequence (either the full sequence, or a
segment of a larger sequence).

Detailed output:

 my ($seq_proba, $ref_residue_proba, $details) = $bg_model->segment_proba($sequence, $return_detail);

where $return_detail is a boolean indicating whether the computation
details (probabilities of sub-sequences) should be returned,
$ref_residue_proba is a reference to an array indicating the
individual residue probailities, and $details a string dsplayed by the
program seq-proba when the option -return detail is acivated.

=cut
sub segment_proba {
  my ($self, $segment, $return_detail) = @_;
  my $detail = "";
  my $seq_len = length($segment);
  my $order = $self->get_attribute("order");
  $segment =  lc($segment);
  my $segment_proba = 1; # Segment probability
  my $segment_proba_print; # Printable sequence probability (inclduding for values < 1-320)
  my $segment_log_proba = 0; # Log(probability) of the segment
  my @residue_proba = (); # Vector with all the residue probabilities
  my @residue_log_proba = (); # Vector with residue log(probabilities)

  &RSAT::error::FatalError("&RSAT::MarkovModel->segment_proba. The segment ($segment) length ($seq_len) must be larger than the markov order ($order) + 1.") 
    if ($seq_len < $order + 1);

  ## Header for the detail line
  $detail = join("\t",
		 "#i",
		 "pre.R",
		 "P(r|pre)",
		 "p",
		 "log(p)",
		 "P(S_1..i)",
		 "log(P(S_1..i))",
		 "S_1..i",
		);
  $detail .= "\n";

  my $prefix = substr($segment,0,$order);
  my $c = 0;

  ################################################################
  ## Prefix probability (only required Markov orders > 0)
  if ($order > 0) { 
    if (defined($self->{prefix_proba}->{$prefix})) {
      $segment_proba = $self->{prefix_proba}->{$prefix};
      $segment_log_proba = log($self->{prefix_proba}->{$prefix});
      push @residue_proba, $self->{prefix_proba}->{$prefix};
      push @residue_log_proba, log($self->{prefix_proba}->{$prefix});
      if ($return_detail) {
	$detail_line = join("\t",
			    ($c+1),
			    $prefix.uc($suffix),
			    "P(".$prefix.")", 
			    sprintf("%5g", $self->{prefix_proba}->{$prefix}),
			    sprintf("%5g", log ($self->{prefix_proba}->{$prefix})),
			    sprintf("%5g",$self->{prefix_proba}->{$prefix}),
			    sprintf("%5g", log($self->{prefix_proba}->{$prefix})),
			    $prefix.uc($suffix),
	    );
	$detail .= $detail_line."\n";
	&RSAT::message::Info($detail_line) if ($main::verbose >= 5);
      }

      ################################################################
      ## Treat the particular case where the prefix contains N
    } elsif ($self->get_attribute("n_treatment") eq "score") {
      my $prefix_proba = 1;
      ## treat each letter of the prefix separately
      foreach my $i (1..length($prefix)) {
	my $residue = substr($prefix,$i-1,1);
	## non-N residues
	if (defined($self->{suffix_proba}->{$residue})) {
	  $prefix_proba *= $self->{suffix_proba}->{$residue};
	  $prefix_log_proba += log($self->{suffix_proba}->{$residue});
	} ## for N residues proba value is 1 =>doesn't affect $prefix_proba
      }
      $segment_proba = $prefix_proba;
      $segment_log_proba = log($prefix_proba);
      push @residue_proba, $prefix_proba;
      push @residue_log_proba, log($prefix_proba);
      #	&RSAT::message::Debug("Ignoring undefined prefix", $prefix,  "proba set to 1") if ($main::verbose >= 10);
    } else {
      &RSAT::error::FatalError("\t", "MarkovModel::segment_proba",
			       "Invalid prefix for the selected sequence type", $prefix);
    }
  }


  ################################################################
  ## Iterate over residues for computing conditional probabilities
  for $c ($order..($seq_len-1)) {
    my $residue_proba = 0;
    my $suffix = substr($segment, $c, 1);
    my $prefix = substr($segment,($c-$order),$order);
    if (defined($self->{transitions}->{$prefix}->{$suffix})) {
      $residue_proba = $self->{transitions}->{$prefix}->{$suffix};
#      push @residue_proba, $residue_proba;
#      push @residue_log_proba, $residue_log_proba;
      if ($residue_proba <= 0) {
	&RSAT::error::FatalError(join("\t", "MarkovModel::segment_proba",
				      "null transition between prefix ", $prefix, " and suffix", $suffix));
      }
    } elsif ($self->get_attribute("n_treatment") eq "score") {
      if (defined($self->{suffix_proba}->{$suffix})) {
	$residue_proba = $self->{suffix_proba}->{$suffix};
#	push @residue_proba, $residue_proba;
      } else {
	$residue_proba = 1;
#	push @residue_proba, $residue_proba;
      }
      #	    &RSAT::message::Debug("Ignoring undefined transition", $prefix, $suffix, "proba set to 1") if ($main::verbose >= 10);
    } else { 
      &RSAT::error::FatalError(join("\t", "MarkovModel::segment_proba",
				    "undefined transition between prefix ", 
				    $prefix, "and suffix", 
				    $suffix));
    }

    ## Compute log-proba of the residue
    $residue_log_proba = log($residue_proba);

    ## Update residue probability vectors
    push @residue_proba, $residue_proba;
    push @residue_log_proba, $residue_log_proba;

    ## Update segment probability
    $segment_log_proba += $residue_log_proba;
    $segment_proba *= $residue_proba;
    
    ## Compute sequence probability from log proba (enables to compute numbers smaller than 1e-300)
    if ($segment_proba < 1e-300) {
	$segment_proba = &RSAT::stats::LogToEng($segment_log_proba);
	$segment_proba_print = $segment_proba;
    } else {
	$segment_proba_print = sprintf("%5g", $segment_proba);
    }

    $detail_line =join("\t",
		       ($c+1),
		       $prefix.uc($suffix),
		       "P(".$suffix."|".$prefix.")", 
		       sprintf("%5g", $residue_proba),
		       sprintf("%5g", $residue_log_proba),
		       $segment_proba_print,
		       sprintf("%5g", $segment_log_proba),
#		       sprintf("%s", &RSAT::stats::LogToEng($segment_log_proba)),
		       substr($segment,0,$c+1),
		      );
    $detail .= $detail_line;
    $detail .= "\n";

  }


  if ($return_detail) {
    return($segment_proba_print, $segment_log_proba, \@residue_proba, $detail);
  } else {
    return($segment_proba_print, $segment_log_proba);
  }
}


=pod

=item B<reverse_bg>

Converts the background model calculated on one strand
to a a model corresponding to the complentary strand

This method take a MarkovModel object as input and 
return another MarkovModel object.

=cut

sub reverse_bg {
	$self = shift;
	my $bg_D = $self;

	### Create a new bg_model object for the reverse complement
	### Has the sme attribute than the bg model of the direct strand
	my $bg_R =  new RSAT::MarkovModel();
	$bg_R->set_attribute("strand", "sensitive");
	$bg_R->set_attribute("n_treatment", $bg_D->get_attribute("n_treatment"));
	$bg_R->force_attribute("bg_pseudo", $bg_D->get_attribute("bg_pseudo"));
	$bg_R->set_attribute("order", $bg_D->get_attribute("order"));
	$bg_R->set_hash_attribute("oligo_freq",());

	### Get the counts from the direct bg_model
	foreach my $prefix_D (sort keys(%{$bg_D->{oligo_freq}})) {
		foreach my $suffix_D (sort keys(%{$bg_D->{oligo_freq}->{$prefix_D}})) {
			my $pattern_D = lc($prefix_D.$suffix_D);
			my $pattern_R = lc(&RSAT::SeqUtil::ReverseComplement($pattern_D));
			my $pattern_count_D = $bg_D->{oligo_freq}->{$prefix_D}->{$suffix_D};
			my $suffix_R = substr($pattern_R, -1);
			my $prefix_len = length $prefix_D;
			my $prefix_R = substr($pattern_R,0,$prefix_len);
			
			$bg_R->{oligo_freq}->{$prefix_R}->{$suffix_R} = $pattern_count_D;
		}
	}
	$bg_R->normalize_transition_frequencies();
	return $bg_R;
}


return 1;

__END__

